PhosphataseArrest™ Phosphatase Inhibitor Cocktail (41 Citations)
Catalog Numbers:
786-647 PhosphataseArrest™ I [100X] 24 x 100ul
786-450 PhosphataseArrest™ I [100X] 1ml
786-782 PhosphataseArrest™ I [100X] 2ml
786-783 PhosphataseArrest™ I [100X] 5ml
786-784 PhosphataseArrest™ I [100X] 10ml
786-451 PhosphataseArrest™ II [100X] 1ml
786-452 PhosphataseArrest™ III [100X] 1ml
PhosphataseArrest™ Phosphatase Inhibitor Cocktail 358
Catalog
Description
Size
Price(USD)
Qty
Catalog
786-647
786-647
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
24 x 100ul
24 x 100ul
$365.00
$365.00
Catalog
786-450
786-450
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
1ml
1ml
$245.00
$245.00
Catalog
786-782
786-782
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
2ml
2ml
$470.00
$470.00
Catalog
786-783
786-783
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
5ml
5ml
$721.00
$721.00
Catalog
786-784
786-784
Description
PhosphataseArrest™ I [100X]
PhosphataseArrest™ I [100X]
Size
10ml
10ml
$987.00
$987.00
Catalog
786-451
786-451
Description
PhosphataseArrest™ II [100X]
PhosphataseArrest™ II [100X]
Size
1ml
1ml
$75.00
$75.00
Catalog
786-452
786-452
Description
PhosphataseArrest™ III [100X]
PhosphataseArrest™ III [100X]
Size
1ml
1ml
$75.00
$75.00
The PhosphataseArrest™ phosphatase inhibitor cocktails are 100X concentrated, ready-to-use solutions that are simply added to your extraction buffers or samples. PhosphataseArrest™ is ideal for inhibition in tissue extractions and cell lysis experiments and is compatible with most common protein assays. In addition, PhosphataseArrest™ III is compatible with IEF/2D studies.
PhosphataseArrest™ I
- A broad spectrum phosphatase inhibitor cocktail consisting of five phosphatase inhibitors that target all the phosphatase categories: serine/threonine (Ser/Thr) specific, tyrosine specific and dual specificity phosphatases
- A stabilized solution of sodium fluoride, sodium orthovanadate, sodium pyrophosphate, ß-glycerophosphate and sodium molybdate
PhosphataseArrest™ II
- A phosphatase inhibitor cocktail consisting of five phosphatase inhibitors that target acid, alkaline and tyrosine phosphatases
- Contains optimized concentrations of sodium fluoride, sodium tartrate, sodium orthovanadate, imidazole and sodium molybdate
PhosphataseArrest™ III
- A phosphatase inhibitor cocktail consisting of three phosphatase inhibitors that target both serine/threonine and alkaline phosphatases
- A stabilized solution of cantharidin, p-bromotetramisole oxalate and microcystin-LR
* If samples have high phosphatase activity then the PhosphataseArrest™ inhibitor cocktails can be used at two to three times concentrations to ensure complete inhibition.
Features
- A selection of 100X concentrated inhibitor cocktails
- Stabilized and ready-to-use
- No resuspension required
Applications
- Complete phosphatase inhibition in tissue extractions and cell lysis experiments
- Protection of protein phosphatase groups
- Compatible with most common protein assays
- Compatible with IEF/2D studies (PhosphataseArrest™ III)
| Protocol | |
| 786-647 | |
| 786-450 | |
| 786-782 | |
| 786-783 | |
| 786-784 | |
| 786-451 | |
| 786-452 | |
| Material Safety Data Sheet | |
| 786-647 | |
| 786-450 | |
| 786-782 | |
| 786-783 | |
| 786-784 | |
| 786-451 | |
| 786-452 | |
| Technical Literature | |
| Bioassays Handbook | |
| Mass Spectrometry Sample Prep Handbook | A guide to the preparation of protein samples for Mass Spectrometry, including protein extraction, clean-up and peptide generation. |
| Plant Proteomics Handbook | |
| Protease & Phosphatase Inhibitors & Proteases Handbook | A handbook & selection guide for inhibitors of protease & phosphatases & for proteases & assays |
| Protein Assay Handbook & Selection Guide | An introduction to protein assays. |
| Protein Electrophoresis Handbook | A guide to 1D and 2D protein electrophoresis products, including protein markers, electrophoresis buffers, 2D electrophoresis reagents, clean-up reagents and stains. The guide also offers protein sample preparation products. |
| Certificate Of Analysis | |
| 786-450 | |
| 786-452 | |
- Kim, D. et al (2020) Hindawi. doi.org/10.1155/2020/7642019
- Pitchaimani, V et al (2020) Neurochemistry International. doi.org/10.1016/j.neuint.2020.104745
- Baker, KS. et al (2019) Direct Amplification of Tissue Factor:Factor VIIa Procoagulant Activity by Bile Acids Drives Intrahepatic Coagulation. ARTERIOSCL THROM VAS. 39:2038–2048
- Lin, T. (2019) BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. AUTOPHAGY. 2019:1671643
- Lin, TY. et al (2019) BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. AUTOPHAGY. DOI:10.1080/15548627.2019.1671643
- Weeraphan, C. et al (2019) Phosphoproteome profiling of isogenic cancer cell‐derived exosome reveals HSP90 as a potential marker for human cholangiocarcinoma.Proteomics.doi.org/10.1002/pmic.201800159
- Bozic, J. et al (2018) Glucosamine prevents polarization of cytotoxic granules in NK-92 cells by disturbing FOXO1/ERK/paxillin phosphorylation.PLoS ONE. doi.org/10.1371/journal.pone.0200757.
- Bergan-Roller, H.E., et al (2017) Insulin and insulin-like growth factor-1 modulate the lipolytic action of growth hormone by altering signal pathway linkages. Gen Comp Endocrinol. http://doi.org/10.1016/j.ygcen.2017.04.005
- Haley, E. et al (2017) Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J Biosci Bioeng. http://dx.doi.org/10.1016/j.jbiosc.2016.12.006.
- Shaefer-Ramadan, S. et al (2017) Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol.DOI: 10.1002/jcp.26157
- Aykul, S. and Martinez-Hackert, E. (2016) Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding.J. Biol. Chem. 2016; 291:10792-10804.
- Durand, S. et al (2016) Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nat. Commun. doi:10.1038/ncomms12434
- Hsieh, C. et al (2016) Persistent increased PKMζ in long-term and remote spatial memory. Neurobiol Learn Mem. DOI: 10.1016/j.nlm.2016.07.008
- Martin, J.S. et al (2016) A single 60‐min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6. Clin Physiol Funct Imaging. DOI: 10.1111/cpf.12343
- Martin, J.S. et al (2016) Impact of external pneumatic compression target inflation pressure on transcriptome‐wide RNA expression in skeletal muscle. Physiol. Rep. DOI: 10.14814/phy2.13029
- Mobley C.B. et all (2016) Whey protein-derived exosomes increase protein synthesis and hypertrophy in C2C12 myotubes. Journal of Dairy Science. Doi 10.3168/jds.2016-11341
- Sharp, M.H. et al (2016) The Effects of Fortetropin Supplementation on Body Composition, Strength, and Power in Humans and Mechanism of Action in a Rodent Model. J. Am. Coll. Nutr. doi/10.1080/07315724.2016.1142403
- Thaker, K. et al (2016) Increased expression of ApoE and protection from amyloid-beta toxicity in transmitochondrial cybrids with haplogroup K mtDNA.Neurobiol. Dis.doi:10.1016/j.nbd.2016.04.005
- Wei, D. et al (2016) Inhibiting cortical protein kinase a in spinal cord injured rats enhances efficacy of rehabilitative training.Exp Neurol.283:365.
- Aykul,S.et PLoS ONE(2015) 10(1): e0114954.
- Bergan, H. et al (2015) Gen Comp Endocrinol. 217:1
- Siddappa, D. et al (2015) PLOS. 10(3): e0119387
- Watanabe, K. et al (2015) J Clin Biochem Nutr. 56:186
- Burcham, G. N. et al (2014) Am. J. Pathol. 184:3176
- Cao, J. et al (2014) BBA-Gen Subjects. 1840:1640
- Cao, J. et al (2014) Neurosciences. 272:58
- Karuppagounder, V. et al (2014) Int Immunopharmacol. 23:617
- Kumar, S. et al (2014) Apoptosis. 19:1069
- Makhmoudova, A. et al (2014) JBC. 289:9233
- Narayanaswamy, R. et al (2014) Mol Cell Biol. doi: 10.1128/MCB.00017-14
- Siddappa, D. et al (2014) Mol Reprod Dev. 81:655
- Bergan, H.E. (2013) J. Mol. Endocrinol. 51:213
- Bohrer, R.C. et al (2013) Reproduction. 146:325
- Lee, A.B. et al (2013) Nature. 493:416
- Bergan, H.E. (2012) Gen. Comp. Endocr. 176:367
- Dupuis, L. et al (2014) Reproduction. 147:221
- Lakshmanan, A.P. et al (2012) Biochem. Pharmacol. 83:653
- Yan, C. et al (2012) Mol Pharmacol 81:401
- Kai, L. and Levenson, A.S. (2011). Anticancer Res. 31:3323
- Siegel, D. et al (2011) J Pharmacol Exp Ther 336:874
- Garrido-Lecca, A. and Blumenthal, T. (2010) Mol Cell Biol 30:3887